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Integrated Determination of Sensitivity Derivatives
for an Aeroelastic Transonic Wing

Alan E. Arslan* and Leland A. Carlsonf
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The incremental iterative technique is used to effectively couple for three-dimensional transonic flow
about a twisted unswept rectangular wing, an aerodynamic solution for the pressure distribution with a
structural solution for the corresponding deflections and, using the quasianalytical approach, simulta-
neously obtain the aerodynamic, structural, and coupling sensitivity derivatives for the fully coupled
system. The solution includes aerodynamic sensitivities for nine design variables at all flowfield points,
structural sensitivities for four design variables at 490 points on the wing, and 450 coupling sensitivities.
Subsequently, fully coupled system sensitivity derivatives are obtained. The results often show significant
differences between the discipline and system sensitivity derivatives and that the system derivatives are
sensitive to the location and number of coupling derivatives.

Nomenclature
C = maximum camber
Ci = section lift coefficient
Cp = pressure coefficient
d( )/d() = system sensitivity derivative
E = Young's modulus of elasticity
LC = location of maximum camber
Moo = freestream Mach number
R = residual of the aerodynamic equation
T = residual of the structural equation
TH = maximum thickness
Ttip = twist angle at the tip
t = thickness of the plate
£/oo = freestream velocity, also Uin{
XD - vector of design variables
jc, v, z = Cartesian coordinate directions
a - angle of attack

= ratio of specific heats

= structural deflections
= Poisson's ratio
= freestream density
= small perturbation velocity potential function
= discipline sensitivity derivative

AC,
8
v
POO

Subscripts
A
*', 7» k
/
/, w, n
root
S
tip
u

= obtained from aerodynamic variables alone
= grid point
= lower side of the wing
= grid point
= at the wing root
= obtained from the structural variables alone
= at the wingtip
- upper side of the wing
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Introduction

IN the nonlinear transonic regime, the determination of op-
timum aerodynamic loads is one of the main difficulties

facing the aircraft designer, and today computational methods
that use optimization techniques are being developed to im-
prove current designs. However, for such advanced approaches
to become more useful as design tools, it is necessary to de-
velop methods for the computation of the sensitivity of the
different parameters, such as aerodynamic forces or structural
deflections, to the different design variables.

In the past, sensitivity methodology has been used in struc-
tural design1 and optimization programs2 and in some aero-
dynamic studies.3"8 However, a significant contributor to re-
quired computational resources in gradient based optimization
procedures has often been the calculation of sensitivity deriv-
atives. Hence, efficient numerical methods for computing such
derivatives are needed, particularly in three dimensions where
the computational resources for a single flow analysis can be
extremely high. In addition, optimization, particularly aero-
dynamic, often requires the modification of pressures in a spe-
cific region. Thus, local sensitivity derivatives of Cp with re-
spect to the design variables are often needed as well as global
derivatives involving integrated values such as lift coefficients,
etc. Again, methods for obtaining these local sensitivities are
needed. Finally, for an optimization process to be accurate, it
must have available system sensitivity derivatives in which the
effects of each discipline on the other are considered.

Sensitivity derivatives can, in principle, be computed by di-
rect differentiation of the governing equations. In the case
where the continuous governing equations are differentiated
prior to their numerical discretization, the method is known as
the continuum or the analytical approach.3 On the other hand,
if the governing equations are differentiated after their dis-
cretization, the method is known as the discrete or the quasi-
analytical approach.

Investigations concerning the feasibility of the quasianalyti-
cal approach for the computation of the aerodynamic sensitiv-
ity derivatives have been undertaken by many researchers3'7
and several methods have proven to be very successful. How-
ever, the differentiation of the governing discretized equations
results in very large systems of algebraic linear sensitivity
equations that must be solved to obtain the derivatives of in-
terest. The application of a direct solver method to such a
system requires extensive computer storage, which for practi-
cal three-dimensional problems is beyond the capacity of most
machines.5 Moreover, the sensitivity matrix, sparse in nature,

224



ARSLAN AND CARLSON 225

is sometimes ill conditioned (or not diagonally dominant), and
the convergence by the use of standard iterative techniques is
slow.7 To avoid these problems, it is necessary to develop other
iterative solution algorithms of the sensitivity equations. One
possibility is the incremental iterative technique3'7 that allows
the iterative calculation of the sensitivity derivatives using al-
gorithms similar to those applied to the flowfield.

The incremental iterative technique can be applied through
a point semi-implicit algorithm to solve simultaneously for the
flowfield, structural deflections, and their respective sensitivi-
ties with respect to the different design variables. However,
these results are only discipline specific, and the effect of one
discipline on the sensitivity derivatives of the other8 needs to
be considered. In other words, system as well as discipline
derivatives need to be determined.

Consequently, the primary objective of this proof-of-concept
effort is to investigate the concept that it is possible to use
similar, perhaps identical, incremental iterative solution ap-
proaches to couple for three-dimensional transonic flow, an
aerodynamic solution with a structural solution, and to simul-
taneously use the same solution algorithms to obtain the aero-
dynamic and structural discipline sensitivity derivatives for the
fully coupled system along with the coupling derivatives nec-
essary to determine system sensitivities. A secondary objective
is to study the number and location of the coupling derivatives
needed to determine system sensitivities.

Theory
Flowfield Model

The equations governing transonic flow are nonlinear and
range from the Navier- Stokes equations to the small pertur-
bation potential equation. Since this study is a proof-of-con-
cept investigation, the flow modeling is the simplest possible,
e.g., the nonconservative nonlinear transonic small perturba-
tion equation:

- Ml - (y + l)Af = 0 (1)

with the x axis downstream, y axis up, and the z axis in the
spanwise direction, and the usual surface, wake, and far-field
boundary conditions.9*10

The finite differencing of Eq. (1), requires the use of a re-
sidual R written in functional notation at the point i, 7, k as

RifJJt = (2)

Since the structural deflections are included in the boundary
conditions and are not treated as dependent design variables
in the previous equation, Eq. (2) should be considered a dis-
cipline equation.

After taking the total differential of Eq. (2) with respect to
a specific design variable XD, the sensitivity equation is
obtained:

(3)=

[dXDJ

In this equation lies the essence of the quasianalytical formu-
lation in which the discretized governing equations are
differentiated. Here, <t>i,m,n is <f>[x(l), y(m\ z(n), XD, 5]; and the
system matrix dR/d<f> is sparse or nonzero only at certain points
(mostly the ones neighboring i, 7, k). In this equation, the vec-
tor of deflections {5}, even though not explicitly shown, is
considered to be a vector of independent variables. Near the
boundaries, Eq. (3) has been reformulated to include the flow-
field boundary conditions. The flowfield sensitivity derivatives
dtydXD that are obtained from solving Eq. (3) can be used to
calculate pressure sensitivities dCp/dXD, which in turn can be
used to calculate the sensitivities of the section and wing lift
to the design variables.

Structural Modeling
To keep the problem simple and to permit rapid solutions,

the wing structure is modeled by an equivalent flat plate with
dimensions almost coincident with those of the wing. The
equation describing the plate deflections is

0 (4)

which assumes a thin plate and small deflections. This model,
while simple, will yield both bending and twisting effects.

The boundary conditions for Eq. (4) involve both fixed and
free edges. The root is the only fixed edge and there the bound-
ary condition is no deflection and zero spanwise slope. At the
wingtip, leading-, and trailing-edges differential equation
boundary conditions representing no twisting moment, no
shearing force, and zero bending moment were utilized.9*10

The residual for Eq. (4) can be expressed as

, XD) (5)

Again, this equation is discipline specific since £/,„ = 8[x(l)9
z(n), <£/,„, XD]; and <£>/„ is the vector of potentials on the upper
and lower side of the wing that are related to the calculation
of loads. This vector is considered to be composed of inde-
pendent variables. Unlike the flowfield case, which is three
dimensional, the deflection field is a two-dimensional variable.

After taking the total derivative of Eq. (5) with respect to a
specific design variable, the structural sensitivity equation is
obtained:

dritk = far,,] /as^
dXD \_d8lin\ \dXD dXD (6)

In this case, also, the system matrix is sparse. Like the flow-
field case, Eq. (6) must take into account the appropriate
conditions at the boundaries.

Coupling
As a result of aerodynamic loads, the equivalent plate rep-

resenting the wing will deflect; and through bending and twist-
ing of the wing such deflections will perturb the section angles
of attack and camber line shapes. These deflections in turn will
induce different load distributions and the two processes must
be fully interacted until a converged solution is obtained.

The coupling between the structural and the flowfield solu-
tions is achieved through the wing boundary conditions and is
included by simply adding the structural deflections to the or-
dinates of the wing. This coupling is only carried out at the
field variables level. In other words, for a linear case (much
below the critical Mach number), a case in which the sensitiv-
ity matrix dR/d<l> would not be influenced by the values of </>,
this aeroelastic coupling would only slightly affect the aero-
dynamic and the structural sensitivity derivatives. Thus, the
flowfield variables and deflections are fully coupled, whereas
the sensitivity derivatives are not.

System Sensitivity
As mentioned, for an optimization process to be accurate, it

must take into account the system sensitivity derivatives for
the coupled disciplines. Thus, the calculation of interdisciplin-
ary sensitivities such as the sensitivity of the pressure distri-
bution to the thickness of the plate or that of the tip deflections
with respect to the camber at the tip are needed. In general,
the set of equations governing the entire coupled system can
be written as11

A[(XD, 5), <W = 0 (7)

S[(XD, <£), 6] = 0 (8)

where Eq. (7) represents the aerodynamics and Eq. (8) is for
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the structures. For the system analysis <£ can be replaced by
AC^ since it is the variable involved in the aerodynamic cou-
pling. The vectors grouped in the inner parentheses are the
input, while the vectors of unknowns (output) are listed last.
The purpose of the analysis is to find the total derivatives dY/
dXD of the output vector with respect to the different design
variables. According to the implicit functions theorem, the pre-
vious equations can be written as11

AC, = , 5)

3 = 8JXD, ACP)

(9)

(10)

After considering Y= ({AC,}, {6}), taking its total derivatives
with respect to XD, and rearranging the terms, the following
system equation is obtained:

T / -/„] f d y l _ (nr\
[-JSA I J \dXD) [dXDJ (11)

where, for selected points on the wing, JAS is a Jacobian of the
partial coupling sensitivity derivatives dACp/dS and JSA is the
Jacobian of d8/dACp. For example, the /th column of JAS com-
prises the partial derivatives with respect to the ith displace-
ment. The partial derivatives in the coupling matrix as well as
the right-hand side are, by definition, calculated using strictly
discipline derivatives. Again, the quasianalytical approach is
used. Equations (2) and (5) are rewritten as

, AC,),

(12)

(13)

where 8 is considered an independent variable for Eq. (12) and
AC, is considered independent for Eq. (13). This approach is
valid since it is discipline specific. Differentiating Eq. (12)
with respect to a given deflection and Eq. (13) with respect to
a given ACP on the wing yields the system of linear coupling
sensitivity equations:

(14)

(15)dAC,
k = to] f ds'.n} + (iZkj =

\dAcJ

which when solved yield the coupling sensitivity derivatives,
i.e., the elements of the J^ and JSA matrices, necessary for the
calculation of the system sensitivities via Eq. (11). Note that
in these equations each 8 and ACP is considered a design var-
iable. Thus, when computing system sensitivities, the number
of effective design variables is augmented by 2 X (number of
grid points on the wing) and much of the computational effort
involves determining the elements of JAS and JSA.

Design Variables
Design variables are classified into two groups, the aero-

dynamic variables termed XDA and the structural variables
called XDS. One variable, Af«, is common to both vectors. A
design variable is considered aerodynamic or structural de-
pending in which of the discipline residuals it appears. For
example, the angle of attack would be an aerodynamic varia-
ble, while the plate thickness, which only appears in the de-
flection equation, would be a structural variable. However, all
of the design variables considered are basic variables in that
they are uncoupled and independent. For the current problem
the vector of design variables consists of 12 variables that can
be classified into three groups:

1) Freestream design variables: these include M«, and a. M«,
enters the formulation through Eq. (1), whereas a appears via
its boundary conditions.

2) Cross-sectional design variables: these include the vari-
ables that define the wing. For the present study only NACA
four-digit airfoils are considered; and the relevant design var-
iables are TH, C, and LC at the root and tip and rtip. The airfoil
sections as well as the aerodynamic twist at a given span sta-
tion are obtained by linear lofting between the root and tip the
values for twist, TH, C, and LC. It should be noted that this
formulation is not a point-by-point lofting in which the vertical
coordinate is interpolated linearly from root to tip, but was
chosen to simplify the analytical derivations as well as the
coding. With this approach, the vector of the aerodynamic de-
sign variables can be written:

XDA = (a, 77ftip, Croot, Ctip, LCroot, LCtip, Ttip, M.)
(16)

3) The structural variables: these include the parameters M*,,
t, v, and E involved in the plate deflection equation. Thus, the
vector of structural design variables is

XDS = (Moo, t, v, E) (17)

These two vectors are combined to form a single vector of
design variables:

XD = (a, 77/root, 77 ,̂ Croot, Ctip, LCroot, LCtip, rtip, M., t, v, E)
(18)

Approach and Numerical Procedure
Aeroelastic Coupling and System Sensitivity Analyses

Aerodynamic-structural coupling can be carried out at two
levels, defined here to be zero and first order. The zero-order
coupling corresponds to an updating of the aerodynamic
boundary conditions each time after the structural deflections
are calculated and vice versa. However, sensitivities are com-
puted as discipline sensitivities and do not directly include the
complete effects of aerodynamic-structural coupling. On the
other hand, the first-order coupling is defined to mean that the
effect of the structure on the flowfield and vice versa is taken
into account not only at the flowfield-deflection level, but also
at the sensitivity level. For example, for the zero-order cou-
pling the structural deflections affect the aerodynamic sensitiv-
ity derivatives through the spanwise flow component <f>z in dRI
dXDA, whereas the first-order coupling also affects that
expression through a coupling term d<f>z/d8. This term is called
a coupling sensitivity. In this second case, the deflections are
not considered constant in the aerodynamic residual expres-
sions [Eq. (7)], as in the discipline specific analysis, and are
considered as design variables. Likewise, in first-order cou-
pling, the potentials related to the Cp calculation along the
wing are treated as design variables for Eq. (8).

The terms that affect coupling the most are those that appear
directly in the residual expressions. These are the deflections,
since they enter directly in the boundary conditions for the
aerodynamic residuals, and the loads ACP, which appear in the
structural residuals. As shown in Eq. (11), the coupling deriv-
atives, dACp/d8 and d^/AC,, are the essential components of
the system sensitivity matrix and are used to obtain the system
sensitivity derivatives. The equations for determining these
coupling derivatives are Eqs. (14) and (15). However, in many
cases not all of the deflections or loads can be used in the
system matrix since such inclusions would require extensive
memory storage and CPU times that are unrealistic. Hence, the
choice of which loads and deflections to include in the system
sensitivity equation is subject to judgment and experimen-
tation.
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Numerical Approach
The coefficient matrices associated with the linear sensitivity

equations, as well as those resulting from the finite differenc-
ing of the flowfield and structural solutions, are generally very
sparse. Thus, the solution of the corresponding linear equations
by standard direct solvers is memory inefficient and iterative
methods should be considered.5"7 In addition, since the non-
linear flowfield equations must be solved iteratively, the use
of a similar iterative scheme to obtain the sensitivities would
seem appropriate.

A possible scheme is the incremental iterative technique,3'7
which has exhibited better convergence characteristics in many
cases than standard iterative techniques. This method involves
a formulation in which a system of algebraic equations has the
general form7:

[A]{Z*} + {B} = {0} (19)

where {Z*}, the solution vector, is obtained by the two-step
formulation:

-[A*]{A"Z} =

{Zn+1} = {Zn}
{B}

{AnZ}
(20)

Here, n is the iteration index and [A*] is a convenient
approximation for [A], generally chosen to enhance diagonal
dominance and the convergence characteristics of the system.

The previous formulation, when applied to sensitivity equa-
tions, can require the storage of a large sensitivity matrix, even
when the zero elements are excluded. However, the use of a
point algorithm to obtain the increments avoids that problem
since it only requires the elements of the matrix relevant to
the calculation of the increment at point i, j, k. While such an
approach has the possible disadvantage of slower convergence,
the sensitivity equations are linear and their convergence
should be similar to that of the nonlinear flowfield.

An example of such a point algorithm is the semi-implicit
Zebra scheme,12 which mimics point successive over relaxa-
tion. The algorithm marches in the streamwise direction solv-
ing by span wise planes. In each plane, the points where j + k
are odd are denoted black and the ones where j + k are even
are denoted white. Each plane is solved by a two-pass sweep
in which new black values are obtained first, followed by the
white ones. Convergence is accelerated because calculations at
the white points use updated values at the black points. Be-

Sweep Flowfield by X-Planes Using Point Semi-Implicit
Zebra Scheme To Solve SIMULTANEOUSLY For

Aerodynamics - A^ j k = -̂  + DMP (1 Set of Equations)

Aerodynamic Sensitivities- Af-^-] (9 Sets of Equations)

Wing Deflections - A5j k ( 1 Set of Equations)
Structural Sensitivities -A( -zjj-^) (4 Sets of Equations)

Coupling Sensitivities-A| ^ 1 (Over 225 Sets of Equations)
V^t>| m ny j . k

(225 Sets of Equations)

-I Iterate Until Convergence I

Solve System Sensitivity Equations for and

cause of its uncoupled formulation, this method is suitable for
sequential, vector, and parallel machines.

In the Zebra algorithm, because of the point semi-implicit-
ness, the matrix [A*] is reduced to a scalar B. Hence, the in-
cremental changes in the unknowns can be found straightfor-
wardly. For example, for the aerodynamic potential

+ DMP (21)

Fig. 1 Integrated incremental iterative solution approach.

where DMP is a damping term added for stability.12 The same
type of formulas can also be used to calculate the increments
for the aerodynamic sensitivity field variables, structural de-
flections, structural sensitivity derivatives, and coupling deriv-
atives.10 The algorithm used is schematically described in
Fig. 1.

Discussion of Results
The wing configuration considered in this study had a rec-

tangular planform of constant unit chord and a half-span value
of ztip = 1.58, an AR of 3.17 with a root-to-tip twist of -1
deg, and the root and tip airfoil sections were NACA 2406
and NACA 1706, respectively. The freestream conditions were
Moo = 0.82 with a = 2 deg, and the equivalent flat plate struc-
tural parameters were t = 0.02, E = 1 X 107, and v = 0.33.
The case presented here used a 9 7 X 1 6 X 1 6 grid for the
flowfield and 49 X 10 for the structural deflections. The free-
stream Mach number is supercritical and a shock wave is pres-
ent on the inboard sections of the upper surface of the wing.
However, the shock wave disappears on the outboard sections
due to three-dimensional effects. Thus, this Mach number is
interesting because it locally includes both subcritical and su-
percritical behavior of the flowfield and the corresponding
sensitivities. Results10 were computed for equivalent plate
thicknesses of 5 and 2%, but only the 2% results are shown.
A 1% thick case was also attempted, but it was aeroelastically
divergent.

For these proof-of-concept investigations, an arbitrarily
large number of iterative cycles was performed to ensure that
all residuals had been reduced as much as possible and to
establish that they subsequently remained unchanged for sev-
eral hundred cycles. The total number of iterations often was
several thousand; and no attempt was made to optimize the
number of cycles or the computational time. Typically, the re-
siduals for the nonlinear aerodynamic solution were reduced
four to six orders of magnitude, while those for the deflections,
aerodynamic and discipline sensitivities, and coupling deriva-
tives were lowered three to four orders of magnitude. Further,
in the early stages of the study, sensitivities were computed by
both the quasianalytical and the finite difference approach.
These studies along with previous results4'5 verified the accu-
racy of the present quasianalytical scheme.

For the coupling variables needed to determine the system
sensitivities, many cases were studied, but only two are dis-
cussed here. The first used 8 of the 10 spanwise stations with
each involving 25 of the 49 possible chordwise points. The
root station was ignored since it has zero deflections and the
next to last span station near the wingtip was excluded. Fur-
ther, the points selected for the chordwise coupling derivative
distribution did not include points near the trailing edge. The
second, whose results are displayed in the figures, used nine
spanwise stations, again with 25 chordwise points and the root
station excluded. In this case, the coupling derivatives were
computed at points near the wing trailing edge. It is believed,
since it is numerically difficult to include every point used in
the fine grid, that the deflections and loads selected for the
coupling system coefficients in the sensitivities are represen-
tative. However, these choices may need further investigation.

Figure 2 shows the pressure distribution at 2 of the 10 span-
wise stations. The upper surface shows a shock wave at ap-
proximately x = 0.5 in the sections near the root. The airfoil
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Fig. 2 Cp distribution and original and deflected wing shape at
two span stations.
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Fig. 3 Structural deflection of equivalent plate.

section, being nonconstant from root to tip, is also shown on
the same diagram; and the angle of attack as well as the ge-
ometric twist are taken into account when plotting the geom-
etry. The final deflected shape of the airfoil due to aeroelastic
coupling is portrayed in dashed lines, but not to scale. The
critical pressure coefficient level C$ is also shown, and com-
parison of C* with the pressures indicates that the shock wave
weakens progressively when approaching the tip, which is ob-
viously subcritical. At the tip, the pressure distribution is typ-
ical of a subcritical aft-cambered NACA section. Note that due
to the change in airfoil sections from root to tip the wing has
some inherent aerodynamic twist and that the lower surface Cp
curve at the tip section is above the upper one, causing neg-
ative aerodynamic loading at the leading edge.

Figure 3 shows the structural deflection of the equivalent
plate at different span stations. Notice that a line drawn from
the leading to the trailing edge of the plate at each section
would form an angle of attack with the x axis, which would
be an induced twist due to structural deflection. Furthermore,
even though the amplitudes are extremely small, bending ex-
ists in the sections. This cambering effect due to chordwise
bending is more pronounced as the tip is approached. In fact,
the chordwise section of the equivalent plate near the tip looks
like a camber line that could cause an increase in lift and could

become an important component of the tip aerodynamics. Note
that the maximum of the structurally induced camber is
slightly aft of midchord.

While sensitivity derivatives for all of the design variables
were obtained at all span stations, they cannot all be included
due to space limitations. Representative results for aerody-
namic discipline sensitivity derivatives are shown in Figs. 4
and 5, while some of the system sensitivity derivatives are
shown in Figs. 6-12. Additional results for both discipline and
system aerodynamic and structural derivatives are given in
Refs. 9 and 10.

Figure 4 represents the results for the sensitivity with respect
to the angle of attack at both a supercritical and a subcritical
station. Both upper and lower surface results are shown as well
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Fig. 4 Discipline result for Cp sensitivity to a at two span
stations.
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Fig. 5 Discipline result for Cp sensitivity to root camber at two
span stations.
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SPAN STA. Z= 1.49

The aerodynamic system sensitivity results with respect to
angle of attack are shown in Fig. 6 at two different stations.
The dashed curves correspond to the discipline sensitivities
and the solid curves are the system values. The results differ
mostly around the leading and trailing edges as the wingtip is
approached since an angle of attack increase would induce
additional structural deflections not included in the aerody-
namic discipline derivatives and small changes, particularly
near the trailing edge, strongly affect the pressures. Note that
the system and discipline derivatives differ not only in mag-
nitude, but also in sign over the aft portion of the wing. It
appears that in predicting pressure changes over the aft portion
of the wing that discipline sensitivities would be inaccurate
and that system derivatives are essential. Note that the system

0.5
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1.0

Fig. 6 ACP sensitivity to a; discipline result dashed, system result
solid.

O CM
^O
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SPAN STA. Z= 0.4381

SPAN STA. Z= 1.4977

Fig. 8 AC, sensitivity to tip camber; discipline result dashed, sys-
tem result solid.
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X/C

Fig. 7 System deflection sensitivity to a.

as the local lift coefficient sensitivities, and as expected,4 the
upper and lower results are similar, but of opposite sign. Note
that the inboard upper surface values exhibit a discontinuity
or spike near the shock wave, which reflects the sensitivity of
Cp to shock movement with a.

Figure 5 shows the results for the sensitivity with respect to
root camber at two supercritical stations, one with a strong
shock and one almost shockless. Note that the lift coefficient
sensitivity with respect to camber is quite large, implying that
the camber derivative would be very important in any opti-
mization. While not shown, the sensitivity to the location of
maximum root camber was significantly smaller,10 indicating
that camber location is not a strong design variable.

1.0

Fig. 9 AC, sensitivity to M^\ discipline result dashed, system re-
sult solid.
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Fig. 10 Deflection sensitivity to Af«»; discipline result dashed, sys-
tem result solid.
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Fig. 11 System ACP sensitivity to equivalent plate thickness.

derivatives do change slope and approach zero as the trailing
edge is approached, as required by theory.

The system structural sensitivities, d6/da, which cannot be
obtained from a discipline approach, show on Fig. 7 that, as
expected, the wing will deflect more with increased angle of
attack. However, near the wingtip, an angle-of-attack increase
will induce some additional structural cambering. These values
for ddldot mean about a 1.5% increase in the deflections for a
10% increase in a, which while not large, might be important
during optimization.

Interestingly, when the coupling sensitivities were computed
excluding at each span station the point next to the trailing
edge, the system ddlda curves had negative values. The omis-

sion of crucial information near the trailing edge yielded larger
values for d(&Cp)/da near the trailing edge and did not detect
the required turnaround and approach to zero. As a result, the
decrease in loading effect near the trailing edge was overem-
phasized, and the system derivatives predicted negative deriv-
atives and less deflection. Obviously, the locations selected for
computing coupling sensitivities must be chosen to include
details near the trailing edge of the wing.

Two aerodynamic system sensitivity results with respect to
camber at the tip are shown in Fig. 8. This case exhibits sig-
nificant differences in magnitude, character, and sign between
the discipline and system aerodynamic derivatives, particularly
in the trailing-edge region where the system derivatives indi-
cate up to a 20% decrease in loading for a 10% tip camber
increase while the discipline sensitivities would predict an
increase.

System sensitivities with respect to Mach number, which is
a discipline design variable for both aerodynamics and struc-
tures, are shown in Figs. 9 and 10. Here, the aerodynamic
system and discipline sensitivities are essentially identical, ex-
cept on the aft quarter of the wing, which means that good
estimates for the changes in aerodynamic loading with Mach
number can be obtained from discipline derivatives over much
of the wing. However, while the structural discipline deriva-
tives are positive, indicating that an increased Mach number
will increase ACP loads, and thus, the deflections, the structural
system derivatives are significantly smaller than and do not
increase as rapidly with span as do the discipline values. This
behavior can be explained by the system load sensitivities,
which are negative near the leading and trailing edges. Thus,
as Mach number increases, the loadings near the leading and
trailing edges will decrease, the increase in structural camber-
ing will be less than predicted by the structural discipline sen-
sitivity, and the overall increase in aerodynamic loading will
be less resulting in less deflection. This behavior is evident by
comparing the discipline dd/dMx and system results dd/dM*, at
station z = 1.49.

All of the pure structural design variables (i.e., t, v, and E)
behave similarly. For simplicity, results are only shown on
Figs. 11 and 12 at two stations for the thickness design vari-
able. In this case, the system d(&Cp)/dt sensitivities show that

•o
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.^=— TT4977
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1.0

Fig. 12 Deflection sensitivity to equivalent plate thickness; dis-
cipline result dashed, system result solid.
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near the leading edge an increase in wing equivalent structural
thickness will lead to an unloading and that near the trailing
edge it will cause either an increased loading or an unloading
less than that near the leading edge, depending upon span lo-
cation. However, the discipline deflection sensitivities, d8/dt,
show decreased deflection and a decrease in structural cam-
bering with increased thickness. The latter is indicated by the
more negative values of dd/dt at midchord and at the trailing
edge than at the leading edge; and the effect is more pro-
nounced with span. On the other hand, the system sensitivity
values for d8/dt exhibit little variation with span, are by com-
parison small, and predict a positive deflection, particularly
near the leading edge. Here the system derivatives reflect the
fact that an increase in thickness will decrease the leading-
edge load more than the trailing edge, which will three di-
mensionally change the structural cambering and the structural
induced angle of attack. The system derivatives dd/dt indicate
that the latter will dominate and that the wing will actually
deflect and twist upward slightly. In this case, and similarly
for the design variables v and E, the system response is con-
trary to intuition and would not be predicted correctly by only
considering discipline sensitivities. Thus, it appears that in
many cases, proper sensitivities can only be obtained by com-
puting system derivatives.

In the early stages of this study, system sensitivities were
computed from the full flowfield (97 X 16 X 16) and structural
(49 X 10) solutions using coupling sensitivities computed at
only eight span stations, each having 13 chordwise coupling
points. The resultant system derivatives often differed in mag-
nitude and sometimes sign from those presented here that were
computed using nine span stations each with 25 chordwise
coupling points. These differences can be explained by the fact
that the choice of 25 coupling points per station will describe
the shock more accurately. Obviously, based upon this result
and those discussed earlier concerning the importance of in-
cluding coupling sensitivities in the trailing-edge region, the
number and location of coupling sensitivities is important and
needs further investigation.

Conclusions
Based on the results presented, the incremental-iterative

technique combined with the semi-implicit ZEBRA algorithm
is a feasible, successful, and memory-efficient approach for
calculating transonic aerodynamics, structural deflections, and
the sensitivity and coupling derivatives obtained from the
quasianalytical formulation. Large memory for the storage of
the sensitivity matrices is not needed, and the sensitivity and
coupling derivatives can be calculated at the same time as the
flowfield and deflections, instead of using converged solutions
as input to sparse matrix solvers.5 The computational resources
thus saved can be used for finer grids, more design variables,
and additional disciplines.

In the present study, a transonic small perturbation solver
was coupled with an equivalent thin plate model along with
quasianalytical formulations for the disciplinary design sensi-
tivities and the interdisciplinary coupling derivatives. This
static aeroelastic coupling is potentially efficient since the
structural calculation and aerodynamic, structural, and cou-
pling sensitivities are computed at the same time as the flow-
field with the same incremental iterative technique.

Because this aeroelastic system is multidisciplinary, system
sensitivity derivatives were also computed to account for the
influence of each discipline on the other. The resultant system
sensitivities often exhibited significant differences in magni-
tude and sometimes sign from the discipline derivatives. Such
differences could be very important in any subsequent opti-
mization process. In addition, the system results were sensitive
to the number and location of the coupling sensitivity deriva-
tives, particularly near the trailing edge of the wing. Since the
coupling derivatives are not computationally easy to obtain due
to slow convergence (especially for the sensitivity of 8 with
ACp), more studies are needed on the number and location of
the coupling points chosen to describe the system behavior.
Further, it was noticed for some design variables that the sys-
tem sensitivity results did not differ significantly from the dis-
cipline results. For these cases, the discipline sensitivities could
be used in an optimization process, thus simplifying compu-
tational effort.
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